Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di-Mei Chen, Ping Zhong,* Zhi-Ping Yang \ddagger and Mao-Lin Hu

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

₹ Present address: Zhangzhou Vocational and Technical College, 363000 Zhangzhou, People's Republic of China.

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.098$
$w R$ factor $=0.248$
Data-to-parameter ratio $=13.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N, N^{\prime}-Bis\{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1H-pyrazol-5-yl\}-1,4-benzenediamide dimethylformamide disolvate

The title compound, $\mathrm{C}_{30} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ or $\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{CONH}-\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}(\mathrm{CN})-\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{CF}_{3}\right]_{2} \cdot 2 \mathrm{HCONMe} 2$, is a fivecyclic amide with an overall Z shape, each of the five rings being planar.

Comment

The title compound, (I), is an important starting material for the synthesis of a number of insecticides (Hatton et al., 1993).

(I)

The molecule occupies a special position on an inversion centre and each of the two peripheral groups is made up of three approximately planar amide (CONH), 3-cyanopyrazole and 2,6-dichloro-4-(trifluoromethyl)phenyl fragments. The amide HNCO plane forms dihedral angles of 39.1 (5) and $11.5(7)^{\circ}$ with the central benzene and pyrazole planes, respectively. The pyrazole forms a dihedral angle of 81.9 (2) ${ }^{\circ}$ with the dichloro(trifluoromethyl)phenyl plane. The only 'active' amide H atom in each half of the molecule forms a hydrogen bond with the carbonyl O atom of a dimethylformamide solvent molecule (Table 1).

Experimental

According to the method of Hatton et al. (1993), the reaction of 2,6-dichloro-4-trifluoromethylamine with a suspension of nitrosylsulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, was used to obtain 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole. To a solution of that compound (10 mmol) in pyridine (8 ml), terephthaloyl dichloride (5 mmol) was added at room temperature. The mixture was stirred continuously for 30 min (reaction monitored by thin-layer chromatography). The reaction mixture was then poured into water (30 ml) to give the title compound, (I), in 86% yield. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a

Received 16 February 2005
Accepted 11 April 2005
Online 16 April 2005
dimethylformamide solution (m.p. 564-565 K). IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3145, 3082, 2347, 2251, 1697, 1538, 1492, 875, 817; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): $9.53(s, 2 \mathrm{H}), 8.08(s, 4 \mathrm{H}), 7.87(s, 2 \mathrm{H}), 7.71(s, 4 \mathrm{H})$.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{~N}_{8} \mathrm{O}_{2} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	$D_{x}=1.469 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=918.47$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 1787
$a=7.7657$ (19) A	reflections
$b=27.655$ (6) \AA	$\theta=2.2-24.2^{\circ}$
$c=9.902$ (2) \AA	$\mu=0.36 \mathrm{~mm}^{-1}$
$\beta=102.526$ (4) ${ }^{\circ}$	$T=298$ (2) K
$V=2075.8$ (8) \AA^{3}	Block, colourless
$Z=2$	$0.35 \times 0.16 \times 0.13 \mathrm{~mm}$
Data collection	
Bruker APEX CCD area-detector diffractometer	3735 independent reflections 3007 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.046$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.2^{\circ}$
(SADABS; Bruker, 2002)	$h=-9 \rightarrow 4$
$T_{\text {min }}=0.883, T_{\text {max }}=0.954$	$k=-31 \rightarrow 33$
10903 measured reflections	$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.098$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0905 P)^{2}\right.$
$+7.5446 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.022$
$\Delta \rho_{\text {max }}=0.90 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.41 \mathrm{e}^{-3}$
$S=1.18$
3735 reflections
271 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$	0.86	2.07	$2.878(7)$	157

All H atoms were initially located in a difference Fourier map and then placed in geometrically idealized positions and included in the refinement in the riding-model approximation, with $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$ and $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the carrier atom $\left(1.5 U_{\text {eq }}\right.$ in the case of methyl H atoms). High displacement parameters for atoms F1, F2 and F3 indicated either large thermal motion or rotational disorder of the trifluoromethyl group. However, attempts to represent the CF_{3} group using a disordered model were unsuccessful. The inability to account for the details of electron-density distribution in the vicinity of the

Figure 1
The structure of (I), showing the atom-numbering scheme and with displacement ellipsoids at the 50% probability level. H atoms are shown as small spheres of arbitrary radii and the dashed lines indicate hydrogen bonds. Unlabelled atoms are related to labelled atoms by $1-x, 1-y$, $1-z$.
CF_{3} group is the most probable reason for the rather limited overall precision of the structure.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (grant No. 20272043) and the Natural Science Foundation of Zhejiang Province (grant No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. \& Roberts, D. A. (1993). US Patent No. 5232940.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

